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GRAVITATIONAL FIELD EFFECTS ON 
MEMBRANE EQUILIBRIUM, DISTENDED WATER 

AND THE LIQUID-VAPOUR INTERFACE 

H. T. HAMMEL* and N. H. MARCH** 

Scripps Institution of Oceanography, 
University of California, San Diego, 

La Jolla, California 92093, USA.  

i Received 20 Junuur), 1989) 

Motivated by the rise of sap in coastal redwood trees, the statistical mechanics of inhomogeneous fluids is 
set out in B form appropriate to discuss (a) a liquid-vapour interface formed in pure water under gravity 
and (b)  an aqueous solution containing a non-volatile solute such as glucose in which water is in 
equilibrium through a semipermeable membrane with distended pure water. In principle. low-order 
gradient expansions allow the density profiles of both pure water and the two-component fluid to be 
calculated in a gravity field. 

KEY WORDS: Osmosis, Hulett's theory, distended solvent, membrane equilibrium, density profiles. 

1 INTRODUCTION 

Early experiments by one of us', in which the behavior at the top of the column of 
water in coastal redwood trees was studied, coupled with some interesting ideas of 
Hulett2, have prompted us to pose the theory of pure fluids and binary fluid mixtures 
in a gravitational field in the form presented below. It has been clear for some time 
that presently tractable theories of, specifically, the liquid-vapour interface in a 
gravitational field, will need to invoke low-order density gradient expansions which, 
in fact, go back to van der Waals. 

As illustrative of the approach adopted below, the flat liquid-vapour interface in 
the .x-y plane, with number density profile p(z), has been studied by Bhatia and 
March3 in zero gravity, in order to understand further the empirical correlation 
between liquid surface tension o and bulk isothermal compressibility K ~ ,  namely, 
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I78 H. T. HAMMEL A N D  N. H. MARCH 

where the length t is the order of 1 A. The two basic equations these workers 
employed expressed respectively the constancy of the chemical potential p and the 
pressure p through the interface. These equations take the form3 

and 

In  these equations, i t  is to be determined that p [ p ( z ) ]  is the chemical potential of the 
homogeneous bulk fluid, with density p(z). Also A is determined solely by a structure 
factor C(Y, p )  of the bulk fluid, c being the Ornstein-Zernike direct correlation 
function. Specifically A is given in terms of c by 

6 A ( p ) / k , T  = dr c(r, p ) r 2  s (4) 

Without solving the Euler Eq. ( 2 )  for the density profile, Bhatia and March3 were able 
to approximately calculate the surface tension from the van der Waals-like formula, 
and to regain the empirical correlation (1). 

All the above is in the absence of a gravitational field. Below, this treatment will be 
generalized to include such an external field, following Fleming, ef aL4 However, 
before doing so, let us turn in the following section to the motivation for the present 
study, following the ideas of Hulett and one of us5. 

2 MOTIVATION; MEMBRANE EQUILIBRIUM AND DISTENDED 
PURE WATER 

In this section, the motivtion for the present study will be discussed. In the right-hand 
part A of Figure 1,  a schematic representation is given of the liquid-vapour interface 
formed at h under gravity. The equations describing this interface, with density profile 
p,(z),  will be given in Section 3. 

The middle part B of Figure 1 is motivated by the experiments on the water column 
in a coastal redwood tree. One can think of this as a distended column of liquid water, 
held in place by constraints as is the water within the xylem vessels and in the 
cellulose, hemi-cellulose and lignin matrix constituting the cell walls of the border 
parenchyma and spongy mesophyll of redwood leaves. Thus, one could think of this 
column of water in the middle part of the figure as being related to the right-hand 
picture through the liquid in B being under an additional external potential, U ( z )  say, 
attributable to the weight of the liquid water below the liquid-vapour interface which 
is held at h’ by a porous matrix. 
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LIQUID-VAPOUR INTERFACES UNDER GRAVITY 179 

B A 

------I- - h 

0 

Figure I A. Denotes liquid-vapour interface at position h under gravitational field (for pure water). B. 
Denotes new position / I '  of liquid vapour interface, when distended pure water (as in a redwood tree) is 
considered. C. Denotes an aqueous solution, with liquid-vapour interface arranged at same height h' as 
distended water column in B, this being achieved by equilibrium of water across the membrane at one 
specific solute (e.g. glucose) concentration. 

The left-hand part of Figure 1, denoted by C, considers, following the ideas of 
Hulett, equilibrium at every z between liquid water in B and C. Water in column C is 
separated from water in B by a membrane permeable only to water. In addition to 
water in C (type 1, say, molecules) there are solute molecules of type 2 (think of 
glucose in water as an example); but no chemical reactions are allowed in the 
'thought' experiments presented in Figure 1. 

This Figure then provides the motivation for Sections 3-5 below. But the striking 
points that need making at this stage with regard to the density profiles we intend to 
use to describe these inhomogeneous fluids and fluid mixtures are as follows: 

( i )  In all three parts of Figure 1 ,  the water density profile will become asymptoti- 
cally the same, once one reaches heights z 2 h' in the vapour phase in all three cases. 

(ii) According to H ~ l e t t ~ , ~ ,  in the membrane equilibrium, the water density profiles 
will be the same in both B and C, though not, of course, for the free liquid-vapour 
interface in A ,  formed under gravity alone. 

What is remarkable about Hulett's claim is that one can, according to his 
contentions, arrange precisely the same profile at each height z for the water in parts B 
and C. Though our work does not enable us to prove Hulett's assertions, what will be 
demonstrated from the study of binary mixtures in a gravitational field in Section 5 is 
that the effect of the solute 2 on the water density profile can indeed be represented 
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180 H. T. HAMMEL A N D  N. H. MARCH 

through a one-component theory in an appropriately constructed external potential. 
This is a vindication of the philosophy expounded by Hulett who deduced, as did one 
of us’, that the solute altered the water in column C as if it was under the same tension 
or pressure at every z in the range 0 < z < h’ as is the water in column B at the same z .  
Deductions from our analysis are less strong than Hulett’s deduction as to the 
complete identity of the two profiles in the apparently very different physical 
conditions in parts B and C of Figure 1. This is the point to turn to the modifications 
of Eqs (2) and (3) above in the case of a free liquid-vapour interface formed under 
gravity. 

3 LIQUID-VAPOUR INTERFACE UNDER GRAVITY 

As discussed at some length by Fleming, et aL4, with inclusion of the gravitational 
field, Eqs (2) and (3) are to be generalized to read 

P + GMm/R,  - m g z  = PCP(Z)l - “ ( Z ) l P ” ( Z )  - Qf4”P(Z)lP’(Z)*. ( 5 )  

Here G is the gravitational constant, g the acceleration due to  gravity, M the mass of 
the Earth while rn is the molecular mass. R ,  in Eq. ( 5 )  is the distance of some reference 
point, taken below to be the Gibbs surface in each case, from the center of the Earth. 
Equation (5) is to be solved for the density profile p ( z ) ,  which for a sufficiently large z ,  
must asymptotically approach the Boltzmann form with a factor exp( - rngz/k,  T ) .  

Though closely related to the change of p from the form of Eq. (2) to Eq. ( 5 ) ,  i t  is 
important here to emphasize that Eq. (3), which expresses the constancy of the 
pressure p across the inhomogeneous liquid-vapour interface must be generalized by 
writing the condition of mechanical equilibrium in which the ‘internal force’ dp(z ) /dz  
is balanced by the ‘external force’: i.e. gravity in the present example. Thus, one can 
write 

(6) 

or, by integration, the pressure difference p ( z )  - p(z,) between points z o  and z > z o  is 
found to be 

d p ( z )  + rnp(z)gdz = 0 

This can be regarded as a statement of Bernoulli’s Theorem, and its content is that the 
pressure at height z relative to that at zo  is diminished by the total weight per unit area 
of fluid between the points z o  and z .  One can add to Eqs (5)-(7) a further equation 
which reduces to the usual surface tension t~ in the limit g --* 0. Of course, in the 
presence of gravity, even the liquid phase is (slightly) inhomogeneous and this leads to 
a density gradient contribution to the ‘tension’ away from the surface region. But in 
general such a correction to the surface tension is a minor one, and will not be 
considered further here. 
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LIQUID-VAPOUR INTERFACES UNDER GRAVITY 181 

4 LIQUID-VAPOUR INTERFACE IN DISTENDED WATER 

One must add to the previous Eq. (5) the effect of a ‘matrix’, or a constraint, which 
holds column B of Figure 1 at the appropriate height shown. If it is possible to 
represent such a constraint by suitable boundary conditions, then one would merely 
have to solve Eq. (5) with different R ,  and different boundary conditions to obtain 
pl(z) for the distended water column. Otherwise, it would be necessary to add a 
spatially dependent ‘external’ potential U ( z )  (compare the discussion of mixtures in 
an applied potential in the Appendix). Note that with such a potential included, one 
would need to modify the equations of mechanical equilibrium expressed in Eqs (6 )  
and (7) above, again as in the Appendix dealing with inhomogeneous fluid mixtures. 

5 BINARY LIQUID MIXTURES AND MEMBRANE EQUILIBRIUM 

Bhatia and March6 have developed a theory of surface segregation in a binary liquid 
mixture in zero gravitational field which generalizes Eq. (1) to a two-component 
system. Subsequently, the relation of their phenomenological theory to the multicom- 
ponent low-order density gradient method of Fleming, Yang and Gibbs’ has been 
exposed by Bhatia, March and Sutton’. Following the presentation of these latter 
workers, the free energy density $ ( z )  for a binary liquid mixture can be expanded to 
lowest order in the density gradients as 

1 
IC/(z) = $ C P ~ ( Z ) ,  P~(z) I  + -1 AijCp,(z), P~(z)IPXZ)P;(Z). (8) 

2 i , j  

Here p l ( z )  and p2(z)  evidently represent the number density profiles in the inhomo- 
geneous liquid mixture of components 1 and 2. The first term in Eq. (8) is the local 
density approximation, while the correction terms account in lowest order for any 
inhomogeneity in the mixture. 

Introducing Lagrange multipliers p1 and p 2  in the usual way, the Euler equations of 
the variation problem posed by Eq. (8) are 

Pl = PlCPl(Z), P2(Z)I  + F ,  (9) 

and 

and 
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182 H. T. HAMMEL A N D  N. H. MARCH 

Following the work of Fleming, Yang and Gibbs on the one-component case, it is 
noted in Ref. 8 that the surface tension of the mixture is given by 

Employing the Euler equations and introducing the equilibrium pressure p, this can 
be expressed3.* in the more useful form for making contact with Eq. (1) above: 

0 = 2 j { P  - PlPl(Z) - P2P2(Z) + +CP,(Z), PZ(Z)lW (15) 

Without introducing further assumptions, or models, the above equations represent 
the furthest point along the gradient expansion route that one can reach. However, 
the work of Hulett2 suggests that one should now regard the basic problem as that of 
describing the water (say component 1) density profile through a one-component-like 
theory as in Sections 3 and 4. This necessitates a relatively straight forward extension 
of the above equations to incorporate an external potential, which has already been 
considered by Fleming, Yang and Gibbs7. 

5. I 
The above treatment was appropriate to zero gravitational field. Let us now 
generalize this to include external potentials Ui(z) which act differentially on the two 
components i = 1 and 2. Then Eq. (8) has to  be modified to read 

Introduction of External Potentials 

Then the chemical potential equations become as in the above equations, with 

Following the treatment of Fleming, Yang and Gibbs7 (see especially their 
pj + pi - V,(Z). 

Appendix A), it is useful to define a dimensionless one-body potential: 

u,‘,z) = [ k ,  7-1 - l[Pj - Ui(Z)] = p[pi  - Ui(Z)] 

Pi(z) = expCui(z) + Ci(z)I/Ai3 

(17) 

Then, in Ref. 7 the density profiles are expressed in the form 

(18) 

where li  = (ph2/2mi7c)”2 is the thermal wavelength of the ith species. Note here that 
Ci(z) can be viewed as treating the effects of the interaction in the mixture in terms of a 
one-body potential seen by the ith species. Fleming, Yang and Gibbs7 assume the 
‘internal’ part of this one-body potential, namely C,(z), to be a functional of the 
densities pj(z). 

We are interested here (see Figure 1 )  in the water density profile [say p,(z)]. Using 
the work of Ref. 7, one can then express the ‘internal’ potential C,(z), which clearly 
must tend to zero as the densities pl(z) and pz(z) become sufficiently dilute in 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
3
3
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



LIQUID-VAPOUR INTERFACES UNDER GRAVITY 183 

component 2, since the effects of interaction tend to zero at such low densities, in the 
(somewhat complex) form 

For the present study, the most important conclusion is that the effect of the 
component 2, say glucose molecules, on the density profile p l ( z )  of the water, can be 
replaced by adding to the dimensionless one-body potential u l ( z )  in Eq. (17) an 
internal potential Cl(z). Then the density profile p l ( z )  can again be treated by the 
one-component theory summarized in Section 4: of course, somewhat formally, in 
view of the relative complexity of Cl(z) above. Nevertheless, this all serves to vindicate 
the philosophy of Hulett, which is the main purpose of this section of the paper. 

6 RELATION TO MEMBRANE EQUILIBRIUM 

This is the point to consider membrane equilibrium between parts B and C of Figure 
1. Assuming the membrane is permeable only to water, we must equate chemical 
potentials of species 1 in each vessel. Then we can write, with superscript zero on A i j  
indicating zero solute concentration and with the additional assumption (cf. Hulett's 
ideas) that the water density profiles are the same in B and C of Figure 1 :  

+ ( p ; ) ' ( f %  - '2) - ( P Y A l l  + p ; A l , ) .  

(20) 

Furthermore, we can write from the equation for the chemical potential of species 2 

This further equation can now be used to eliminate the term dA,,/i3pl from Eq. (20), 
though A,,  itself is thereby introduced, as well as aA,,/ap2. The resulting equation 
would, at least in principle, allow the profile p2(z)  to be calculated, given p l ( z )  and 
bulk properties of the solution alone. 

Another way of viewing Eq. (20) is to say that given the density profiles p l ( z )  and 
p,(z), one of which we have seen to be determined within the above framework by 
pure, but distended water, Eq. (20) provides a relation at each z between properties 
A?,(p)  of pure water and the quantities A i j  of the solution. However, it must be noted 
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184 H. T. HAMMEL A N D  N. H. MARCH 

that while the Aij(s are determined by the two-body partial Orstein-Zernike functions 
at any chosen thermodynamic state, density derivatives of these relate to three- 
particle correlations. 

I t  seems to us possible that the above procedure could be worked out fully within 
the model of conformal (closely related to regular) solution theory, where the bulk 
structural properties are well established from the work of Parrinello, Tori and 
March’, and we are currently exploring this avenue. 

7 DISCUSSION AND SUMMARY 

The low-order density gradient expansion, within the framework of the statistical 
mechanics of inhomogeneous fluids, has been shown to be sufficient to describe the 
chemical physics embodied in each of the parts A, B and C of Figure 1. The 
liquid-vapour interface formed in a gravitational field (part A of Figure 1) could now 
be worked out (numerically) for a simple fluid like argon, given the Ornstein-Zernike 
function c(r, p )  of the bulk liquid through the entire range of densities from liquid to 
solid. 

Turning next most naturally to part C of Figure 1, the Gibbs surface could be 
moved relative to the center of the Earth compared with that in part A of Figure 1 by 
varying the solute concentration. Given the bulk Orstein-Zernike functions A,,, at 
this solute concentration, one could again calculate approximate density profiles p l(z) 
and p 2 ( z )  from the equations of Section 5. If now membrane equilibrium is established 
between parts B and C of Figure 1, then according to Hulett’s idea, the distended 
water in B will have also a density profile pl(z). 

The thought experiments embodied in Figure 1 clearly relate properties of a pure 
liquid, say water, in a suitably constructed ‘external’ potential including gravity to the 
effects of solute on solvent in a fluid mixture in the gravitational field. Just as in bulk 
liquid mixtures, progress has proved possible by the statistical mechanical theory by 
relating the mixture properties to those of a suitably chosen one component reference 

so we can anticipate that the procedure outlined in this work will help to 
simplify the treatment of inhomogeneous fluid mixtures in a gravitational field. 

Hulett’s idea that the solute in a solution distends the solvent may also be deduced 
by a simplified version of his thought experiment, Figure 2. This experiment could be 
conducted in a space craft wherein g = 0. In vessel 1 of Figure 2, pure liquid water is 
contained in a tube and is in equilibrium with its water vapour at a pressure p(i). In 
vessel 2 of Figure 2, a non-volatile solute is dissolved in water; the solution is 
contained in a tube and the solution is in equilibrium with water vapour at a lower 
vapour pressure p(ii). The temperature in vessel 1 is the same as in vessel 2. In vessel 3 
of Figure 2, the same solution is contained in a tube at  the same temperature as in 
vessel 2. Also in vessel 3, pure liquid water is contained in a tube and is constrained by 
a porous matrix at its interfaces with the vapour. The pure liquid water in its tube in 
vessel 3 is distended by tension and this tension lowers its vapour pressure to p(ii), the 
same as for the water in the solution. The pure water constrained in its tube in vessel 3 
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LIQUID-VAPOUR INTERFACES UNDER GRAVITY 185 

3 

Figure 2 (1) Pure liquid water is in equilibrium with its vapour at vapour pressure p(i) in a zero gravity 
field. (2) Aqueous solution of a non-volatile solute is in equilibrium with water vapour a t  reduced vapour 
pressure p(ii). (3) Same solution as in (2) is in equilibrium (a) with water vapour at same pressure p(ii) and 
(b)  with distended water, under porous constraint. 

could now be coupled to the water in the solution in vessel 3 through a membrane 
permeable only to water and n o  net flow of water would result from this coupling. 
Again, the density profile of the constrained, distended pure liquid water mimics the 
density profile of the water in the solution when the fluids in both tubes are in 
equilibrium with the same vapour pressure at  the same temperature. 
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186 H. T. HAMMEL A N D  N .  H. MARCH 

APPENDIX MECHANICAL EQUILIBRIUM IN FLUID MIXTURES 

The Helmholtz free energy can, at fixed temperature, be expressed as a spatial integral 
of a local free energy density dr$(z), where in low-order density gradient expansion 
as employed for pure fluids in Sections 2 and 3 we can write 

Here, p i ( z )  is the number density of species i at height z .  U i ( z )  is an external potential 
as seen by species i .  A i j ( ( p ) )  is related to the molecular interaction of species i with 
species j. In particular, 

A i j  = ~ drrzci j (r ,  { p } )  k B T  6 I 
where the ci;s are partial Ornstein-Zernike direction correlation functions. One 
obtains by minimization of the free energy, the Euler equations 

One can multiply by dpi/dz  and sum over i to find 

3 = 1 p i ( z ) u ; ( z )  
i = 1 . 2  

where C-J~ denotes the stress tensor. Equation (A4) is the statement that the system is 
mechanically in equilibrium. 

For a mixture in equilibrium under gravity the previous equation for p(z)  - p(z , )  
readily generalizes to 

p ( z )  + jz>mi Pi(z)g = p(z,), 

which is again Bernoulli’s theorem (see also Fleming, Yang and Gibbs’). 
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